How Does Thermal Analysis Work?

Thermal Analysis

To know how thermal analysis works it is important that we understand what thermal analysis is and where it is used. Thermal Analysis influences that part of science that deals with materials. There are almost 11 known types of thermal analysis. Depending on the situation and the material that is about to undergo the test these thermal analyses are classified. In the process of thermal analysis, the administer makes an effort to find how a material reacts at different temperatures. In simple terms change in material in correspondence with the change in temperature. This is the simple science behind the thermal analysis.

Thermal Analysis

History and Scope of Thermal Analysis:

  • It is quite interesting to note that thermal analysis came into existence during the BC days. This is because most of the changes that natural sciences dealt with were with regard to fire. So they regarded fire as the basic matter that propelled change within two physical quantities.
  • Keeping the above point in mind, the sciences that followed also employed fire as the considered it as the general analyzer of matter. However, they kept redefining the word fire with words like heat and temperature.
  • Thermal Analysis is primarily used in the pharmaceutical industry. So it has to be either a chemist or a pharmacist who will possibly be handling the thermal analysis procedures.
  • Usage of thermal analysis is widely used in the chemical industry. This is because the change in the reaction between two materials can be monitored quickly be a chemist only with the fluctuation in temperature.
  • Almost all the studies carried out in the purview of thermal analysis can be classified into three major heads. They are Mass, Temperature or other parameters such as dimensions, etc. Depending what head the materials fall into, the method of thermal analysis is chosen.
  • There is also a concept called Simultaneous Thermal Analysis where the method enables the application of two processes such as a thermal analysis and a differential scanning calorimetry on the same material, at the same time and also in the same instrument.
  • The common application of thermal analysis is found in pharmaceutical materials, polymer, metal, food and printed circuit boards

Now that you have gotten a basic idea of what is thermal analysis, let us see how the process works:

Process of thermal analysis:

  • Thermal Analysis begins with finding the right method that has to be applied to the material that is undergoing the test.
  • Once the suitable method is found, the next thing is to apply the same onto the materials. A set of tools and instruments are required to carry out the process. Once you have the things set, you can get to the process of thermal analysis.
  • At varying degrees of heat, the material is tested, and the corresponding changes are recorded along with the results. The point at which the material is found to give the required result is what we find through the thermal analysis.


Role of Ultrasonic Devices in Industry

Ultrasonic Devices

Ultrasonic waves are those waves that have a range that is more than the upper limit of the audibility range of a normal human being. Which means the sound that is generated by the ultrasonic waves is not audible for the human ears. The word ‘ultrasonic’ is more often associated with hardware and engineering industry. But in reality, they play a significant role in the medical field as well.

Ultrasonic Devices

Ultrasonic in industries:

  • As far as the usage of the ultrasonic waves in the industrial sector is concerned, it plays a major role in the testing sector. It is one of the most common methods used in the non-destructive testing equipment.
  • In case if you didn’t know about these testing methods, testing the quality of a product can be classified into destructive testing methods and non-destructive testing methods. Since we are restricting ourselves to the non-destructive testing methods, we will see what this non-destructive method is. In the process of assuring the quality of a product the manufacturers employ testing methods, and if these testing methods come out with results with affecting the product or damaging them, then they are known are non-destructive testing methods. So non-destructive testing has to do with Ultrasonic waves? Ultrasonic waves are also utilized by the industries to test the quality of the product and this testing falls under the non-destructive category.
  • They analyze the product and give out the results without tampering the product. That is the reason why ultrasonic waves are associated with the non-destructive testing equipment. Most of the tools and equipment that are designed for the non-destructive testing purpose have the influence ultrasonic waves in them.
  • This ultrasonic method is employed in areas where the inspection is critical, making it an important part of the industries.
  • In industries that involve a lot of complex engineering as in the case of an aircraft, if damaged can be easily spotted and rectified with the help of ultrasonic waves. Prospectively dangerous situations can also be avoided as these methods in most cases are non-destructive and do not explore or exploit the other associated parts unless directed to do so. This makes rectification much easier than before. So this means, ultrasonic waves do not just stop with ensuring quality but also assists in rectifying the errors if any spotted.
  • Apart from non-destructive testing, ultrasonic waves are used in drilling, welding, soldering, cutting and machinery, cleaning and sonar. So the usage of ultrasonic waves is pretty much versatile than we can imagine.


The process in which these waves work is simple. The medium that uses the waves s what that matters. It is simply the transmission of rays, and the rays reflect through the medium that they are sent through. They precisely act on the spot where checking or rectification is required, without damaging the system and the transmission gets back to the source from where it was earlier generated. This is the process involved in the industrial ultrasonic transmission.